Patent for PMC
There is disclosed a precious metal article which is formed of a solid-phase sintered product of a precious metal powder. For manufacturing the precious metal article, a moldable mixture which contains a precious metal powder and a binder removable by sintering is shaped into a prescribed molded object, and the molded object is then subjected to sintering. The moldable mixture is produced by preparing a precious metal powder, preparing a jellylike cellulose binder by blending a cellulose with water and leaving for a prescribed period of time, and blending the precious metal powder and the jellylike cellulose binder together. The most preferable moldable mixture contains 50 to 90% by weight of precious metal powder, 0.8 to 8% by weight of water-soluble cellulose binder, 0.08 to 3% by weight of a surface-active agent. 0.1 to 3% by weight of oil, balance water and unavoidable impurities. The precious metal powder preferably contains gold powder and powder of an alloy containing silver or copper, and the gold powder is obtained by submerged-reduction method.
a) Precious metal powder:
Powders of precious metal such as gold, silver, copper, platinum and their alloys are main constituents for the moldable material to be obtained. If the content is less than 50% by weight, desired effects cannot be obtained. On the other hand, if the content exceeds 90% by weight, the resulting moldable material is inferior in extensibility and strength. Therefore, the content of the precious metal powder has been determined so as to range from 50 to 90% by weight.
In addition, if the average particle size of the precious metal powder exceeds 200 μm, the extensibility and strength are deteriorated. Therefore, it is preferable that the average particle size of the precious metal powder is no greater than 200 μm.
(b) Water-soluble cellulose binder:
When heated, the water soluble binder is quickly gelled, so that it is very easy to keep the shape of the molded article. However, if the binder content is less than 0.8% by weight, such an advantage cannot be obtained. On the other hand, if the content exceeds 8% by weight, fluidity is unduly increased, so that it becomes difficult to mold the mixture. Therefore, the content of the cellulose binder is determined so as to range from 0.8 to 8% by weight.
In the foregoing, methyl cellulose and/or ethyl cellulose are favorably used as the water-soluble binder of the above kind.
(c) Surface-active agent:
A surface-active agent breaks solid substances which are formed by the reaction of the binder with water, and facilitates an efficient mixing of the precious metal powder with the binder. However, if its content is less than 0.03% by weight, desired effects cannot be obtained. On the other hand, if the content exceeds 3% by weight, the fluidity of the moldable mixture is unduly reduced, so that molding operation cannot be smoothly carried out. Accordingly, the content of the surface-active agent to be added is determined so as to range from 0.03 to 3% by weight. As described above, polysoap or alkyl benzene sodium sulfonate is preferable as this agent.
(d) Adhesion-preventing agent:
When a small amount of adhesion-preventing agent, or oil and fat, is added, the moldable mixture is prevented from sticking to hand during the molding operation. However, if the content is less than 0.1% by weight, the effects cannot be obtained. On the other hand, if the content exceeds 3% by weight, the moldable mixture becomes oily and slippery, resulting in poor handling characteristics. Therefore, the content of the adhesion-preventing agent is determined so as to range from 0.1 to 3% by weight.
This agent may include higher organic acid such as phthalic acid, higher organic ester such as di-n-octyl phthalate or di-n-butyl phthalate, higher alcohol, higher polyhydric alcohol such as polyvinyl alcohol, polyethylene glycol, and higher ether.
Furthermore, it has been found that when ethylene glycol is added in an amount of no greater than 30% by weight, preferably 2 to 10% by weight, with respect to water, the moldability of the resulting mixture can be further improved. However, if the content exceeds 30% by weight, the viscosity is reduced, so that the moldability deteriorates instead.
Patent #5328775
Found it here:http://bbs.homeshopmachinist.net/showthread.php?t=41842