- Joined
- Feb 25, 2007
- Messages
- 8,360
I trust you went through the proper wash procedure? While gold that comes from this process tends to be of quite high quality, I don't recommend you melt any gold that has been precipitated without first washing properly. I've discussed the washing process at length in previous posts. Be certain you follow that, or a comparable, procedure. The wash should include at least one application of ammonium hydroxide, even if you don't feel it is necessary. It performs a valuable operation in dissolving substances that may not, otherwise, get washed from the precipitated gold.Ageo308 said:Ok Harold we did the final process, as we are letting it dry and before we melt which flux will suffice?
Regards the flux you use. Use nothing but borax for melting pure gold. The use of other chemicals has the potential to reduce oxides, recombining them with the pure gold, defeating your purpose in processing the gold. If your gold is clean, you need only a film of borax covering the dish, which will serve to "lubricate" the molten gold and allow it to flow well. If your flux discolors when you melt your gold, the gold is not clean. The flux should remain clear of color, shifting towards purple. If any other color develops, the gold is contaminated. Once melted, the surface of your gold should remain shiny, with on oxide skin forming, and will cool with a large crystalline pattern. It should also pull a very deep hole in the center, as it solidifies. If it frosts up and refuses to form the hole (pipe), the gold is not pure.
This is a little confusing. For starters, while melting the mud while it's wet will work, you risk breaking your melting dish, depending on how long the wet material is in intimate contact with the melting dish, and how well it is coated with flux.We tried melting whilst still wet using borax and it seemed like it did the job fine. I think we didn't do the last bit correctly thow as it still has a brown mud on the bottom along with the gold and other metals.
There should be nothing on the bottom of your container aside from gold. If other metals have precipitated with the gold, something has gone woefully wrong. Can you tell me what you think is there with the gold?
If you've read my washing procedure, you know that the gold that is ready for melting has been well washed and dried. It never leaves the beaker in which you precipitate the gold------not until it has been through all of the process. By following this procedure, the gold gets washed and dried, and acts as its own collector for the very fine particles of gold that can be troublesome. The only time it doesn't collect all the dusty particles is when the gold is very dirty, from dirty solutions. In that case, it is usually accompanied by a dark color, but not always.
I'm going to assume you have done a good hot wash with HCl and water, and have rinsed the mud enough times (tap water) that the rinse water is coming off the mud in an almost clear color. The mud at this point should be a maroon to purple color, depending on the volume of gold it contains, and what medium was used for polishing. If the benchman did a lot of platinum work, it's possible the mud could even be green in color. I've seen them vary widely, so color alone is not a good indicator of contents.If you don't mind could you go into a bit more detail from the AR process onwards? We are going to try some more tomorrow night.
It's hard to guess the amount of value in the mud, for various reasons. The entire objective is to dissolve all the values, which can then be rinsed from the mud via a few tap water washes. Start with AR (mixed @ 4 parts minimum HCl and 1 part nitric). If you have a hunch on content, assume that amount to dissolve 1 troy ounce. Do not use too much AR----if you add unneeded nitric to the mix, it must be eliminated before recovering the gold. The negative side is that if you don't use enough, you won't get total extraction. The best policy is to estimate your recovery and use slightly less acid than is required. Let it work, heated, until it has done all the work it can, then add a little HCl to insure that you did not run out of it in the process, leaving some nitric unconsumed. If you get no further reaction (fumes) by adding the HCl, add a small amount (half ounce or so) of nitric and observe fuming, if any. Repeat this process until further additions of acid yield no reaction. At this point you're wise to allow the mud to stew for a while, to insure that you have dissolved larger bits of gold. Polishing waste usually contains bits of gold from the use of abrasives at the wheel, and they take a little longer to dissolve. The mud should have changed color completely, and reflect a cream color. Solution, if you've done your washing properly before dissolving the gold, will now be a nice deep yellow orange color, a sign of dissolved values and few, if any, base metals. If the solution is green, or darker, the preliminary wash was not carried out well, and an abundance of base metal was left in the mud.
I never used urea, so I can't discuss its proper application. My method was to evaporate the solution, which eliminates unused nitric acid, plus was an indicator that I had used enough AR to dissolve all of the contents of the mud. Had I not, there would be no unused nitric present. I proved the unused nitric by adding a weighed button of gold to the solution, which gradually dissolved as the solution was evaporated. By weighing before and after, you can determine how much gold you added to the process, which should be subtracted from the gross yield to determine the net yield. By using the button, evaporation need not be carried to a totally thick solution, so it saves time in evaporation. Note that a few drops of sulfuric acid should be included in the evaporation process, which will serve to precipitate any traces of lead as lead sulfate. This is an important part of the process. Do not leave it out. Lead is death on gold's ductility. When the solution has been evaporated until it is well concentrated, and has shifted color towards a dark red, some HCl is added. If there is no reaction at the gold button (considerable bubbling and some brown fumes), you can consider that there is no more nitric present, and the solution can be diluted with tap water and filtered. Once filtered, it can be precipitated with the precipitant of your choosing. I favored SO2 from a bottle, but you can use any of a wide variety of precipitants. One that is easy to use and is readily available at a garden shop is ferrous sulfate. Hoke's book discusses the application in fine detail. The ferrous sulfate, if that be your choice, should be a nice green color. If the color has shifted to brown (exposure to excessive moisture), it will not precipitate gold.
No, I did not use coffee filters, although I did use something that is very similar (Shark Skin, made by S&S) for filtering the solution from the mud. Once my solutions were evaporated, I preferred a Whatman #2 paper, which I purchased in the 32 cm size if memory serves correctly. They fit, when properly folded, the filter funnels that are readily available from chemical supply houses. I found it to be the best filter on the market for filtering solutions prior to precipitation.Also for the filter we used the coffee filters which seemed like it did a very good job (have you ever used that before)??
The exception to this is that when I filtered gold that was re-refined, I then switched to a Whatman #5, same size. That is a very tight and slow filter paper, and will remove the smallest of contaminants. Unless you're working with very clean solutions at the outset, they perform very poorly. They're quick to stop flowing, but very good at removing miniscule particles from otherwise clean solutions. That describes the gold that I re-refined perfectly, so it was a perfect match for the process.
There's nothing wrong with using coffee filters aside from the fact that they tend to allow very fine particles to pass. As long as your solution is crystal clear (of flocculence, not color), it doesn't matter if you use a coffee filter or don't filter at all, for that matter. The important thing is to separate all the particulate matter from the solution before gold is precipitated, otherwise you recombine unwanted materials with your processed gold. Gravity alone can be used to separate solutions from insoluble materials, it just takes more time, and it makes retrieving the last little bit more difficult. I was way too busy to take the time, so fast and good filtration was important to my operation. I learned to turn out solutions that would filter readily. How well a solution filters revolves around doing the proper washes before you ever dissolve the gold. By doing so, compounds that are formed by acids and difficult to filter are eliminated in the preliminary washes and rinses. These are things you'll learn as you progress.
Harold